上一篇
📊 ASP.NET高效数据统计全攻略 | 2025最新实践 🚀
DbSet.FromSql
执行参数化查询,防止注入攻击:var department = await _context.Departments .FromSql("SELECT * FROM Department WHERE DepartmentID = {0}", id) .Include(d => d.Administrator) .AsNoTracking() .FirstOrDefaultAsync();
ExecuteSqlCommandAsync
实现高效数据变更:var rowsAffected = await _context.Database.ExecuteSqlCommandAsync( "UPDATE Course SET Credits = Credits * {0}", multiplier);
var statistics = _context.YourTable .GroupBy(item => item.SomeProperty) .Select(group => new { PropertyValue = group.Key, Count = group.Count() }).ToList();
<canvas id="myChart"></canvas> <script> var chart = new Chart(ctx, { type: 'bar', data: { labels: statistics.map(s => s.PropertyValue), datasets: [{ label: '数量', data: statistics.map(s => s.Count) }] } }); </script>
async/await
处理数据库操作,提升并发能力:public async Task<IActionResult> GetProducts() { var products = await _repository.GetAllAsync(); return Ok(products); }
IMemoryCache
缓存高频数据:var cachedData = _cache.GetOrCreate("Key", entry => { entry.AbsoluteExpiration = DateTime.Now.AddMinutes(10); return _repository.GetData(); });
services.AddResponseCompression(options => { options.Providers.Add<GzipCompressionProvider>(); });
dotnet add package Chart.js
using var connection = new SqlConnection(connString); var stats = connection.Query<Stats>("SELECT Category, COUNT(*) FROM Data GROUP BY Category");
CREATE FUNCTION GetStatsByDate(@gxsj DATE) RETURNS TABLE AS RETURN ( SELECT * FROM Data WHERE gxsj <= @gxsj );
app.UseMiddlewareRequestLoggerMiddleware>(); builder.Services.AddSingleton<MyService>();
💬 互动话题:你在ASP.NET数据统计中遇到过哪些性能瓶颈?欢迎留言讨论! 👇
本文由 业务大全 于2025-08-23发表在【云服务器提供商】,文中图片由(业务大全)上传,本平台仅提供信息存储服务;作者观点、意见不代表本站立场,如有侵权,请联系我们删除;若有图片侵权,请您准备原始证明材料和公证书后联系我方删除!
本文链接:https://vds.7tqx.com/wenda/710755.html
发表评论